Homogeneous Space
A homogeneous space is a similar concept. A homogeneous space can be non-isotropic (for example, a flat torus), in the sense that an invariant metric tensor on a homogeneous space may not be isotropic.
This topology-related article is a stub. You can help Wikipedia by expanding it. |
Read more about this topic: Isotropic Manifold
Famous quotes containing the words homogeneous and/or space:
“If we Americans are to survive it will have to be because we choose and elect and defend to be first of all Americans; to present to the world one homogeneous and unbroken front, whether of white Americans or black ones or purple or blue or green.... If we in America have reached that point in our desperate culture when we must murder children, no matter for what reason or what color, we dont deserve to survive, and probably wont.”
—William Faulkner (18971962)
“Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.”
—Blaise Pascal (16231662)