Isomorphism - Relation With Equality

Relation With Equality

See also: Equality (mathematics)

In certain areas of mathematics, notably category theory, it is valuable to distinguish between equality on the one hand and isomorphism on the other. Equality is when two objects are exactly the same, and everything that's true about one object is true about the other, while an isomorphism implies everything that's true about a designated part of one object's structure is true about the other's. For example, the sets

and

are equal; they are merely different presentations—the first an intensional one (in set builder notation), and the second extensional (by explicit enumeration)—of the same subset of the integers. By contrast, the sets {A,B,C} and {1,2,3} are not equal – the first has elements that are letters, while the second has elements that are numbers. These are isomorphic as sets, since finite sets are determined up to isomorphism by their cardinality (number of elements) and these both have three elements, but there are many choices of isomorphism – one isomorphism is

while another is

and no one isomorphism is intrinsically better than any other. On this view and in this sense, these two sets are not equal because one cannot consider them identical: one can choose an isomorphism between them, but that is a weaker claim than identity—and valid only in the context of the chosen isomorphism.

Sometimes the isomorphisms can seem obvious and compelling, but are still not equalities. As a simple example, the genealogical relationships among Joe, John, and Bobby Kennedy are, in a real sense, the same as those among the American football quarterbacks in the Manning family: Archie, Peyton, and Eli. The father-son pairings and the elder-brother-younger-brother pairings correspond perfectly. That similarity between the two family structures illustrates the origin of the word isomorphism (Greek iso-, "same," and -morph, "form" or "shape"). But because the Kennedys are not the same people as the Mannings, the two genealogical structures are merely isomorphic and not equal.

Another example is more formal and more directly illustrates the motivation for distinguishing equality from isomorphism: the distinction between a finite-dimensional vector space V and its dual space V* = { φ : V → K} of linear maps from V to its field of scalars K. These spaces have the same dimension, and thus are isomorphic as abstract vector spaces (since algebraically, vector spaces are classified by dimension, just as sets are classified by cardinality), but there is no "natural" choice of isomorphism . If one chooses a basis for V, then this yields an isomorphism: For all u. vV,

.

This corresponds to transforming a column vector (element of V) to a row vector (element of V*) by transpose, but a different choice of basis gives a different isomorphism: the isomorphism "depends on the choice of basis". More subtly, there is a map from a vector space V to its double dual V** = { x : V* → K} that does not depend on the choice of basis: For all vV and φ ∈ V*,

.

This leads to a third notion, that of a natural isomorphism: while V and V** are different sets, there is a "natural" choice of isomorphism between them. This intuitive notion of "an isomorphism that does not depend on an arbitrary choice" is formalized in the notion of a natural transformation; briefly, that one may consistently identify, or more generally map from, a vector space to its double dual, for any vector space in a consistent way. Formalizing this intuition is a motivation for the development of category theory.

If one wishes to draw a distinction between an arbitrary isomorphism (one that depends on a choice) and a natural isomorphism (one that can be done consistently), one may write for an unnatural isomorphism and ≅ for a natural isomorphism, as in V V* and VV**. This convention is not universally followed, and authors who wish to distinguish between unnatural isomorphisms and natural isomorphisms will generally explicitly state the distinction.

Generally, saying that two objects are equal is reserved for when there is a notion of a larger (ambient) space that these objects live in. Most often, one speaks of equality of two subsets of a given set (as in the integer set example above), but not of two objects abstractly presented. For example, the 2-dimensional unit sphere in 3-dimensional space

and the Riemann sphere

which can be presented as the one-point compactification of the complex plane C ∪ {∞} or as the complex projective line (a quotient space)

are three different descriptions for a mathematical object, all of which are isomorphic, but not equal because they are not all subsets of a single space: the first is a subset of R3, the second is CR2 plus an additional point, and the third is a subquotient of C2

In the context of category theory, objects are usually at most isomorphic – indeed, a motivation for the development of category theory was showing that different constructions in homology theory yielded equivalent (isomorphic) groups. Given maps between two objects X and Y, however, one asks if they are equal or not (they are both elements of the set Hom(X, Y), hence equality is the proper relationship), particularly in commutative diagrams.

Read more about this topic:  Isomorphism

Famous quotes containing the words relation with, relation and/or equality:

    [Man’s] life consists in a relation with all things: stone, earth, trees, flowers, water, insects, fishes, birds, creatures, sun, rainbow, children, women, other men. But his greatest and final relation is with the sun.
    —D.H. (David Herbert)

    Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning “When” are much more numerous than those beginning “Where” of “If.” As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.
    William Harmon (b. 1938)

    A woman’s asking for equality in the church would be comparable to a black person’s demanding equality in the Ku Klux Klan.
    Mary Daly (b. 1928)