Definition
Given a graph Λ (for example, a d-dimensional lattice), per each lattice site j ∈ Λ there is a discrete variable σj such that σj ∈{+1, −1}. A spin configuration, σ = (σj)j∈Λ is an assignment of spin value to each lattice site.
For any two adjacent sites i, j ∈Λ one has an interaction Jij, and a site i ∈ Λ has an external magnetic field hi. The energy of a configuration σ is given by the Hamiltonian Function
where the first sum is over pairs of adjacent spins (every pair is counted once).
where β = (kBT)-1
and the normalization constant
is the partition function. For a function f of the spins ("observable"), one denotes by
the expectation (mean value) of f.
The configuration probabilities represent the probability of being in a state with configuration σ in equilibrium.
Read more about this topic: Ising Model
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)