Irrational Number - The Set of All Irrationals

The Set of All Irrationals

Since the reals form an uncountable set, of which the rationals are a countable subset, the complementary set of irrationals is uncountable.

Under the usual (Euclidean) distance function d(x, y) = |xy|, the real numbers are a metric space and hence also a topological space. Restricting the Euclidean distance function gives the irrationals the structure of a metric space. Since the subspace of irrationals is not closed, the induced metric is not complete. However, being a G-delta set—i.e., a countable intersection of open subsets—in a complete metric space, the space of irrationals is topologically complete: that is, there is a metric on the irrationals inducing the same topology as the restriction of the Euclidean metric, but with respect to which the irrationals are complete. One can see this without knowing the aforementioned fact about G-delta sets: the continued fraction expansion of an irrational number defines a homeomorphism from the space of irrationals to the space of all sequences of positive integers, which is easily seen to be completely metrizable.

Furthermore, the set of all irrationals is a disconnected metrizable space. In fact, the irrationals have a basis of clopen sets so the space is zero-dimensional.

Read more about this topic:  Irrational Number

Famous quotes containing the word set:

    If, while watching the sun set on a used-car lot in Los Angeles, you are struck by the parallels between this image and the inevitable fate of humanity, do not, under any circumstances, write it down.
    Fran Lebowitz (b. 1950)