Inversion in Higher Dimensions
In the spirit of generalization to higher dimensions, inversive geometry is the study of transformations generated by the Euclidean transformations together with inversion in an n-sphere:
where r is the radius of the inversion.
In 2 dimensions, with r = 1, this is circle inversion with respect to the unit circle.
As said, in inversive geometry there is no distinction made between a straight line and a circle (or hyperplane and hypersphere): a line is simply a circle in its particular embedding in a Euclidean geometry (with a point added at infinity) and one can always be transformed into another.
A remarkable fact about higher-dimensional conformal maps is that they arise strictly from inversions in n-spheres or hyperplanes and Euclidean motions: see Liouville's theorem (conformal mappings).
Read more about this topic: Inversive Geometry
Famous quotes containing the words higher and/or dimensions:
“A man should have a farm or a mechanical craft for his culture. We must have a basis for our higher accomplishments, our delicate entertainments of poetry and philosophy, in the work of our hands.”
—Ralph Waldo Emerson (18031882)
“The truth is that a Pigmy and a Patagonian, a Mouse and a Mammoth, derive their dimensions from the same nutritive juices.... [A]ll the manna of heaven would never raise the Mouse to the bulk of the Mammoth.”
—Thomas Jefferson (17431826)