Inversion in Higher Dimensions
In the spirit of generalization to higher dimensions, inversive geometry is the study of transformations generated by the Euclidean transformations together with inversion in an n-sphere:
where r is the radius of the inversion.
In 2 dimensions, with r = 1, this is circle inversion with respect to the unit circle.
As said, in inversive geometry there is no distinction made between a straight line and a circle (or hyperplane and hypersphere): a line is simply a circle in its particular embedding in a Euclidean geometry (with a point added at infinity) and one can always be transformed into another.
A remarkable fact about higher-dimensional conformal maps is that they arise strictly from inversions in n-spheres or hyperplanes and Euclidean motions: see Liouville's theorem (conformal mappings).
Read more about this topic: Inversive Geometry
Famous quotes containing the words higher and/or dimensions:
“I think its one of the scars in our culture that we have too high an opinion of ourselves. We align ourselves with the angels instead of the higher primates.”
—Angela Carter (19401992)
“It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?or animals?even forests or oceans or rocks?in this world of ours or, even, in worlds or dimensions elsewhere.”
—Doris Lessing (b. 1919)