Inverse Trigonometric Functions - Infinite Series

Infinite Series

Like the sine and cosine functions, the inverse trigonometric functions can be calculated using infinite series, as follows:


\begin{align}
\arcsin z & {}= z + \left( \frac {1} {2} \right) \frac {z^3} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots\\
& {}= \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{2n+1}} {(2n+1)}
; \qquad | z | \le 1
\end{align}



\begin{align}
\arccos z & {}= \frac {\pi} {2} - \arcsin z \\
& {}= \frac {\pi} {2} - (z + \left( \frac {1} {2} \right) \frac {z^3} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots ) \\
& {}= \frac {\pi} {2} - \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{2n+1}} {(2n+1)}
; \qquad | z | \le 1
\end{align}



\begin{align}
\arctan z & {}= z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots \\
& {}= \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}
; \qquad | z | \le 1 \qquad z \neq i,-i
\end{align}



\begin{align}
\arccot z & {}= \frac {\pi} {2} - \arctan z \\
& {}= \frac {\pi} {2} - ( z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots ) \\
& {}= \frac {\pi} {2} - \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}
; \qquad | z | \le 1 \qquad z \neq i,-i
\end{align}



\begin{align}
\arcsec z & {}= \arccos {(1/z)} \\
& {}= \frac {\pi} {2} - (z^{-1} + \left( \frac {1} {2} \right) \frac {z^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^{-5}} {5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^{-7}} {7} + \cdots ) \\
& {}= \frac {\pi} {2} - \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{-(2n+1)}} {(2n+1)}
; \qquad \left| z \right| \ge 1
\end{align}



\begin{align}
\arccsc z & {}= \arcsin {(1/z)} \\
& {}= z^{-1} + \left( \frac {1} {2} \right) \frac {z^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4 } \right) \frac {z^{-5}} {5} + \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {z^{-7}} {7} +\cdots \\
& {}= \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{-(2n+1)}} {2n+1}
; \qquad \left| z \right| \ge 1
\end{align}


Leonhard Euler found a more efficient series for the arctangent, which is:

(Notice that the term in the sum for n= 0 is the empty product which is 1.)


Alternatively, this can be expressed:

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes related to infinite series:

    Henry B. Adams was the first in an infinite series to discover and admit to himself that he really did not care whether truth was, or was not, true. He did not even care that it should be proved true, unless the process were new and amusing. He was a Darwinian for fun.
    Henry Brooks Adams (1838–1918)