Inverse Trigonometric Functions - General Solutions

General Solutions

Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of 2π. Sine and cosecant begin their period at 2πk − π/2 (where k is an integer), finish it at 2πk + π/2, and then reverse themselves over 2πk + π/2 to 2πk + 3π/2. Cosine and secant begin their period at 2πk, finish it at 2πk + π, and then reverse themselves over 2πk + π to 2πk + 2π. Tangent begins its period at 2πk − π/2, finishes it at 2πk + π/2, and then repeats it (forward) over 2πk + π/2 to 2πk + 3π/2. Cotangent begins its period at 2πk, finishes it at 2πk + π, and then repeats it (forward) over 2πk + π to 2πk + 2π.

This periodicity is reflected in the general inverses where k is some integer:

Which, written in one equation, is:
Which, written in one equation, is:

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words general and/or solutions:

    We raised a simple prayer
    Before we left the spot,
    That in the general mowing
    That place might be forgot;
    Or if not all so favored,
    Obtain such grace of hours
    That none should mow the grass there
    While so confused with flowers.
    Robert Frost (1874–1963)

    Those great ideas which come to you in your sleep just before you awake in morning, those solutions to the world’s problems which, in the light of day, turn out to be duds of the puniest order, couldn’t they be put to some use, after all?
    Robert Benchley (1889–1945)