Inverse Trigonometric Functions - Expression As Definite Integrals

Expression As Definite Integrals

Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:


\begin{align}
\arcsin x &{}= \int_0^x \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arccos x &{}= \int_x^1 \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arctan x &{}= \int_0^x \frac 1 {z^2 + 1}\,dz,\\
\arccot x &{}= \int_x^\infty \frac {1} {z^2 + 1}\,dz,\\
\arcsec x &{}= \int_1^x \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arcsec x &{}= \pi + \int_x^{-1} \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1\\
\arccsc x &{}= \int_x^\infty \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arccsc x &{}= \int_{-\infty}^x \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1
\end{align}

When x equals 1, the integrals with limited domains are improper integrals, but still well-defined.

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words expression and/or definite:

    Of course, some men are very effective caregivers [of elderly parents]. But this situation occurs far less frequently for males than females, because it is a role reversal. For women, caregiving is an expected duty; for men, it is an unexpected expression of love or devotion.
    Tish Sommers (20th century)

    The success of a party means little more than that the Nation is using the party for a large and definite purpose.... It seeks to use and interpret a change in its own plans and point of view.
    Woodrow Wilson (1856–1924)