Inverse Trigonometric Functions - Expression As Definite Integrals

Expression As Definite Integrals

Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:


\begin{align}
\arcsin x &{}= \int_0^x \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arccos x &{}= \int_x^1 \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arctan x &{}= \int_0^x \frac 1 {z^2 + 1}\,dz,\\
\arccot x &{}= \int_x^\infty \frac {1} {z^2 + 1}\,dz,\\
\arcsec x &{}= \int_1^x \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arcsec x &{}= \pi + \int_x^{-1} \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1\\
\arccsc x &{}= \int_x^\infty \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arccsc x &{}= \int_{-\infty}^x \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1
\end{align}

When x equals 1, the integrals with limited domains are improper integrals, but still well-defined.

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words expression and/or definite:

    The American adolescent, then, is faced, as are the adolescents of all countries who have entered or are entering the machine age, with the question: freedom from what and at what price? The American feels so rich in his opportunities for free expression that he often no longer knows what it is he is free from. Neither does he know where he is not free; he does not recognize his native autocrats when he sees them.
    Erik H. Erikson (1904–1994)

    God is the efficient cause not only of the existence of things, but also of their essence.
    Corr. Individual things are nothing but modifications of the attributes of God, or modes by which the attributes of God are expressed in a fixed and definite manner.
    Baruch (Benedict)