Inverse Trigonometric Functions - Application: Finding The Angle of A Right Triangle

Application: Finding The Angle of A Right Triangle

Inverse trigonometric functions are useful when trying to determine the remaining two angles of a right triangle when the lengths of the sides of the triangle are known. Recalling the right-triangle definitions of sine, for example, it follows that

Often, the hypotenuse is unknown and would need to be calculated before using arcsine or arccosine using the Pythagorean Theorem: where is the length of the hypotenuse. Arctangent comes in handy in this situation, as the length of the hypotenuse is not needed.

For example, suppose a roof drops 8 feet as it runs out 20 feet. The roof makes an angle θ with the horizontal, where θ may be computed as follows:

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words finding and/or angle:

    A submissive spirit might be patient, a strong understanding would supply resolution, but here was something more; here was that elasticity of mind, that disposition to be comforted, that power of turning readily from evil to good, and of finding employment which carried her out of herself, which was from Nature alone. It was the choicest gift of heaven.
    Jane Austen (1775–1817)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)