Invariance On Homogeneous Spaces
Let M = G/H be a homogeneous space for a Lie group G and a Lie subgroup H. Every representation gives rise to a vector bundle
Sections can be identified with
In this form the group G acts on sections via
Now let V and W be two vector bundles over M. Then a differential operator
that maps sections of V to sections of W is called invariant if
for all sections in and elements g in G. All linear invariant differential operators on homogeneous parabolic geometries, i.e. when G is semi-simple and H is a parabolic subgroup, are given dually by homomorphisms of generalized Verma modules.
Read more about this topic: Invariant Differential Operator
Famous quotes containing the words homogeneous and/or spaces:
“If we Americans are to survive it will have to be because we choose and elect and defend to be first of all Americans; to present to the world one homogeneous and unbroken front, whether of white Americans or black ones or purple or blue or green.... If we in America have reached that point in our desperate culture when we must murder children, no matter for what reason or what color, we dont deserve to survive, and probably wont.”
—William Faulkner (18971962)
“Every true man is a cause, a country, and an age; requires infinite spaces and numbers and time fully to accomplish his design;and posterity seem to follow his steps as a train of clients.”
—Ralph Waldo Emerson (18031882)