Isoperimetric Inequality in The Plane
The solution to the isoperimetric problem in the plane is usually expressed in the form of an inequality that relates the length of a closed curve and the area of the planar region that it encloses. The isoperimetric inequality states that
and that the equality holds if and only if the curve is a round circle. The inequality is an upper bound for area in terms of length. It can be rewritten as follows:
Read more about this topic: Introduction To Systolic Geometry
Famous quotes containing the words inequality and/or plane:
“The doctrine of equality!... But there exists no more poisonous poison: for it seems to be preached by justice itself, while it is the end of justice.... Equality for equals, inequality for unequalsMthat would be the true voice of justice: and, what follows from it, Never make equal what is unequal.”
—Friedrich Nietzsche (18441900)
“It was the most ungrateful and unjust act ever perpetrated by a republic upon a class of citizens who had worked and sacrificed and suffered as did the women of this nation in the struggle of the Civil War only to be rewarded at its close by such unspeakable degradation as to be reduced to the plane of subjects to enfranchised slaves.”
—Anna Howard Shaw (18471919)