Intracranial EEG - Electrophysiological Basis

Electrophysiological Basis

ECoG signals are composed of synchronized postsynaptic potentials (local field potentials), recorded directly from the exposed surface of the cortex. The potentials occur primarily in cortical pyramidal cells, and thus must be conducted through several layers of the cerebral cortex, cerebrospinal fluid (CSF), pia mater, and arachnoid mater before reaching subdural recording electrodes placed just below the dura mater (outer cranial membrane). However, to reach the scalp electrodes of an electroencephalogram (EEG), electrical signals must also be conducted through the skull, where potentials rapidly attenuate due to the low conductivity of bone. For this reason, the spatial resolution of ECoG is much higher than EEG, a critical imaging advantage for presurgical planning. ECoG offers a temporal resolution of approximately 5 ms and a spatial resolution of 1 cm.

Using depth electrodes, the local field potential gives a measure of a neural population in a sphere with a radius of 0.5–3 mm around the tip of the electrode. With a sufficiently high sampling rate (more than about 10 kHz), depth electrodes can also measure action potentials. In which case the spatial resolution is down to individual neurons, and the field of view of an individual electrode is approximately 0.05-0.35 mm.

Read more about this topic:  Intracranial EEG

Famous quotes containing the word basis:

    The cultivation of literary pursuits forms the basis of all sciences, and in their perfection consist the reputation and prosperity of kingdoms.
    Marquês De Pombal (1699–1782)