Intersection Number

In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.

The intersection number is obvious in certain cases, such as the intersection of x- and y-axes which should be one. The complexity enters when calculating intersections at points of tangency and intersections along positive dimensional sets. For example if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory.

Read more about Intersection Number:  Definition For Riemann Surfaces, Definition For Algebraic Varieties, Further Definitions, Intersection Multiplicities For Plane Curves, Self-intersections, Applications

Famous quotes containing the words intersection and/or number:

    If we are a metaphor of the universe, the human couple is the metaphor par excellence, the point of intersection of all forces and the seed of all forms. The couple is time recaptured, the return to the time before time.
    Octavio Paz (b. 1914)

    Take away from the courts, if it could be taken away, the power to issue injunctions in labor disputes, and it would create a privileged class among the laborers and save the lawless among their number from a most needful remedy available to all men for the protection of their business interests against unlawful invasion.... The secondary boycott is an instrument of tyranny, and ought not to be made legitimate.
    William Howard Taft (1857–1930)