Definition
A superintuitionistic logic is a set L of propositional formulas in a countable set of variables pi satisfying the following properties:
- all axioms of intuitionistic logic belong to L;
- if F and G are formulas such that F and F → G both belong to L, then G also belongs to L (closure under modus ponens);
- if F(p1, p2, ..., pn) is a formula of L, and G1, G2, ..., Gn are any formulas, then F(G1, G2, ..., Gn) belongs to L (closure under substitution).
Such a logic is intermediate if furthermore
- L is not the set of all formulas.
Read more about this topic: Intermediate Logic
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)