The Bellovin/Merritt Attack
Davies and Price proposed the use of the Interlock Protocol for authentication in a book titled Security for Computer Networks. But an attack on this was described by Steven M. Bellovin & Michael Merritt. A subsequent refinement was proposed by Ellison.
The Bellovin/Merritt attack entails composing a fake message to send to the first party. Passwords may be sent using the Interlock Protocol between A and B as follows:
A B Ea,b(Pa)<1>-------> <-------Ea,b(Pb)<1> Ea,b(Pa)<2>-------> <-------Ea,b(Pb)<2>where Ea,b(M) is message M encrypted with the key derived from the Diffie-Hellman exchange between A and B, <1>/<2> denote first and second halves, and Pa/Pb are the passwords of A and B.
An attacker, Z, could send half of a bogus messageāP?--to elicit Pa from A:
A Z B Ea,z(Pa)<1>------> <------Ea,z(P?)<1> Ea,z(Pa)<2>------> Ez,b(Pa)<1>------> <------Ez,b(Pb)<1> Ez,b(Pa)<2>------> <------Ez,b(Pb)<2>At this point, Z has compromised both Pa and Pb. The attack can be defeated by verifying the passwords in parts, so that when Ea,z(P?)<1> is sent, it is known to be invalid and Ea,z(Pa)<2> is never sent (suggested by Davies). However, this does not work when the passwords are hashed, since half of a hash is useless, according to Bellovin. There are also several other methods proposed in, including using a shared secret in addition to the password. The forced-latency enhancement can also prevent certain attacks.
Read more about this topic: Interlock Protocol
Famous quotes containing the word attack:
“... possibly there is no needful occupation which is wholly unbeautiful. The beauty of work depends upon the way we meet itwhether we arm ourselves each morning to attack it as an enemy that must be vanquished before night comes, or whether we open our eyes with the sunrise to welcome it as an approaching friend who will keep us delightful company all day, and who will make us feel, at evening, that the day was well worth its fatigues.”
—Lucy Larcom (18241893)