Definition
Let E be a Banach space such that both E and its continuous dual space E∗ are separable spaces; let μ be a Borel measure on E. Let S be any (fixed) subset of the class of functions defined on E. A linear operator A : S → L2(E, μ; R) is said to be an integration by parts operator for μ if
for every C1 function φ : E → R and all h ∈ S for which either side of the above equality makes sense. In the above, Dφ(x) denotes the Fréchet derivative of φ at x.
Read more about this topic: Integration By Parts Operator
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)