Higher Dimensions
The formula for integration by parts can be extended to functions of several variables. Instead of an interval one needs to integrate over an n-dimensional set. Also, one replaces the derivative with a partial derivative.
More specifically, suppose Ω is an open bounded subset of with a piecewise smooth boundary Γ. If u and v are two continuously differentiable functions on the closure of Ω, then the formula for integration by parts is
where is the outward unit surface normal to, is its i-th component, and i ranges from 1 to n.
By replacing v in the above formula with vi and summing over i gives the vector formula
where v is a vector-valued function with components v1, ..., vn.
Setting u equal to the constant function 1 in the above formula gives the divergence theorem
For where, one gets
which is the first Green's identity.
The regularity requirements of the theorem can be relaxed. For instance, the boundary Γ need only be Lipschitz continuous. In the first formula above, only is necessary (where H1 is a Sobolev space); the other formulas have similarly relaxed requirements.
Read more about this topic: Integration By Parts
Famous quotes containing the words higher and/or dimensions:
“Painting seems to be to the eye what dancing is to the limbs. When that has educated the frame to self-possession, to nimbleness, to grace, the steps of the dancing-master are better forgotten; so painting teaches me the splendor of color and the expression of form, and as I see many pictures and higher genius in the art, I see the boundless opulence of the pencil, the indifferency in which the artist stands free to choose out of the possible forms.”
—Ralph Waldo Emerson (18031882)
“Words are finite organs of the infinite mind. They cannot cover the dimensions of what is in truth. They break, chop, and impoverish it.”
—Ralph Waldo Emerson (18031882)