Integrating Factor - Use in Solving First Order Linear Ordinary Differential Equations

Use in Solving First Order Linear Ordinary Differential Equations

Integrating factors are useful for solving ordinary differential equations that can be expressed in the form

The basic idea is to find some function, called the "integrating factor," which we can multiply through our DE in order to bring the left-hand side under a common derivative. For the canonical first-order, linear differential equation shown above, our integrating factor is chosen to be

We see that multiplying through by gives

By applying the product rule in reverse, we see that the left-hand side can be expressed as a single derivative in

We use this fact to simplify our expression to

We then integrate both sides with respect to, obtaining

Finally, we can move the exponential to the right-hand side to find a general solution to our ODE:

In the case of a homogeneous differential equation, in which, we find that

where is a constant.


Read more about this topic:  Integrating Factor

Famous quotes containing the words solving, order, ordinary and/or differential:

    You are right to demand that an artist engage his work consciously, but you confuse two different things: solving the problem and correctly posing the question.
    Anton Pavlovich Chekhov (1860–1904)

    To compose our character is our duty, not to compose books, and to win, not battles and provinces, but order and tranquillity in our conduct.
    Michel de Montaigne (1533–1592)

    I was not content to believe in a personal devil and serve him, in the ordinary sense of the word. I wanted to get hold of him personally and become his chief of staff.
    Aleister Crowley (1875–1947)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)