Use in Solving First Order Linear Ordinary Differential Equations
Integrating factors are useful for solving ordinary differential equations that can be expressed in the form
The basic idea is to find some function, called the "integrating factor," which we can multiply through our DE in order to bring the left-hand side under a common derivative. For the canonical first-order, linear differential equation shown above, our integrating factor is chosen to be
We see that multiplying through by gives
By applying the product rule in reverse, we see that the left-hand side can be expressed as a single derivative in
We use this fact to simplify our expression to
We then integrate both sides with respect to, obtaining
Finally, we can move the exponential to the right-hand side to find a general solution to our ODE:
In the case of a homogeneous differential equation, in which, we find that
where is a constant.
Read more about this topic: Integrating Factor
Famous quotes containing the words solving, order, ordinary and/or differential:
“More than a decade after our fellow citizens began bedding down on the sidewalks, their problems continue to seem so intractable that we have begun to do psychologically what government has been incapable of doing programmatically. We bring the numbers downnot by solving the problem, but by deciding its their own damn fault.”
—Anna Quindlen (b. 1952)
“Success and failure in our own national economy will hang upon the degree to which we are able to work with races and nations whose social order and whose behavior and attitudes are strange to us.”
—Ruth Benedict (18871948)
“Certainly ordinary language has no claim to be the last word, if there is such a thing. It embodies, indeed, something better than the metaphysics of the Stone Age, namely, as was said, the inherited experience and acumen of many generations of men.”
—J.L. (John Langshaw)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)