Integrally Closed Domain - Noetherian Integrally Closed Domain

Noetherian Integrally Closed Domain

For a noetherian local domain A of dimension one, the following are equivalent.

  • A is integrally closed.
  • The maximal ideal of A is principal.
  • A is a discrete valuation ring (equivalently A is Dedekind.)
  • A is a regular local ring.

Let A be a noetherian integral domain. Then A is integrally closed if and only if (i) A is the intersection of all localizations over prime ideals of height 1 and (ii) the localization at a prime ideal of height 1 is a discrete valuation ring.

A noetherian ring is a Krull domain if and only if it is an integrally closed domain.

In the non-noetherian setting, one has the following: an integral domain is integrally closed if and only if it is the intersection of all valuation rings containing it.

Read more about this topic:  Integrally Closed Domain

Famous quotes containing the words closed and/or domain:

    We are closed in, and the key is turned
    On our uncertainty;
    William Butler Yeats (1865–1939)

    The vice named surrealism is the immoderate and impassioned use of the stupefacient image or rather of the uncontrolled provocation of the image for its own sake and for the element of unpredictable perturbation and of metamorphosis which it introduces into the domain of representation; for each image on each occasion forces you to revise the entire Universe.
    Louis Aragon (1897–1982)