Integrally Closed Domain - Noetherian Integrally Closed Domain

Noetherian Integrally Closed Domain

For a noetherian local domain A of dimension one, the following are equivalent.

  • A is integrally closed.
  • The maximal ideal of A is principal.
  • A is a discrete valuation ring (equivalently A is Dedekind.)
  • A is a regular local ring.

Let A be a noetherian integral domain. Then A is integrally closed if and only if (i) A is the intersection of all localizations over prime ideals of height 1 and (ii) the localization at a prime ideal of height 1 is a discrete valuation ring.

A noetherian ring is a Krull domain if and only if it is an integrally closed domain.

In the non-noetherian setting, one has the following: an integral domain is integrally closed if and only if it is the intersection of all valuation rings containing it.

Read more about this topic:  Integrally Closed Domain

Famous quotes containing the words closed and/or domain:

    We are closed in, and the key is turned
    On our uncertainty;
    William Butler Yeats (1865–1939)

    Without metaphor the handling of general concepts such as culture and civilization becomes impossible, and that of disease and disorder is the obvious one for the case in point. Is not crisis itself a concept we owe to Hippocrates? In the social and cultural domain no metaphor is more apt than the pathological one.
    Johan Huizinga (1872–1945)