"Integrally Closed" Under Constructions
The following conditions are equivalent for an integral domain A:
- A is integrally closed;
- Ap (the localization of A with respect to p) is integrally closed for every prime ideal p;
- Am is integrally closed for every maximal ideal m.
1 → 2 results immediately from the preservation of integral closure under localization; 2 → 3 is trivial; 3 → 1 results from the preservation of integral closure under localization, the exactness of localization, and the property that an A-module M is zero if and only if its localization with respect to every maximal ideal is zero.
In contrast, the "integrally closed" does not pass over quotient, for Z/(t2+4) is not integrally closed.
The localization of a completely integrally closed need not be completely integrally closed.
Read more about this topic: Integrally Closed Domain
Famous quotes containing the word closed:
“Since time immemorial, one the dry earth, scraped to the bone, of this immeasurable country, a few men travelled ceaselessly, they owned nothing, but they served no one, free and wretched lords in a strange kingdom. Janine did not know why this idea filled her with a sadness so soft and so vast that she closed her eyes. She only knew that this kingdom, which had always been promised to her would never be her, never again, except at this moment.”
—Albert Camus 10131960, French-Algerian novelist, dramatist, philosopher. Janine in Algeria, in The Fall, p. 27, Gallimard (9157)