Integral Equation - Integral Equations As A Generalization of Eigenvalue Equations

Integral Equations As A Generalization of Eigenvalue Equations

Certain homogeneous linear integral equations can be viewed as the continuum limit of eigenvalue equations. Using index notation, an eigenvalue equation can be written as

,

where is a matrix, is one of its eigenvectors, and is the associated eigenvalue.

Taking the continuum limit, by replacing the discrete indices and with continuous variables and, gives

,

where the sum over has been replaced by an integral over and the matrix and vector have been replaced by the 'kernel' and the eigenfunction . (The limits on the integral are fixed, analogously to the limits on the sum over .) This gives a linear homogeneous Fredholm equation of the second type.

In general, can be a distribution, rather than a function in the strict sense. If the distribution has support only at the point, then the integral equation reduces to a differential eigenfunction equation.

Read more about this topic:  Integral Equation

Famous quotes containing the word integral:

    Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.
    Henry David Thoreau (1817–1862)