Integrable System - Hamiltonian Systems and Liouville Integrability

Hamiltonian Systems and Liouville Integrability

In the special setting of Hamiltonian systems, we have the notion of integrability in the Liouville sense. Liouville integrability means that there exists a regular foliation of the phase space by invariant manifolds such that the Hamiltonian vector fields associated to the invariants of the foliation span the tangent distribution. Another way to state this is that there exists a maximal set of Poisson commuting invariants (i.e., functions on the phase space whose Poisson brackets with the Hamiltonian of the system, and with each other, vanish).

In finite dimensions, if the phase space is symplectic (i.e., the center of the Poisson algebra consists only of constants), then it must have even dimension, and the maximal number of independent Poisson commuting invariants (including the Hamiltonian itself) is . The leaves of the foliation are totally isotropic with respect to the symplectic form and such a maximal isotropic foliation is called Lagrangian. All autonomous Hamiltonian systems (i.e. those for which the Hamiltonian and Poisson brackets are not explicitly time dependent) have at least one invariant; namely, the Hamiltonian itself, whose value along the flow is the energy. If the energy level sets are compact, the leaves of the Lagrangian foliation are tori, and the natural linear coordinates on these are called "angle" variables. The cycles of the canonical -form are called the action variables, and the resulting canonical coordinates are called action-angle variables (see below).

There is also a distinction between complete integrability, in the Liouville sense, and partial integrability, as well as a notion of superintegrability and maximal superintegrability. Essentially, these distinctions correspond to the dimensions of the leaves of the foliation. When the number of independent Poisson commuting invariants is less than maximal (but, in the case of autonomous systems, more than one), we say the system is partially integrable. When there exist further functionally independent invariants, beyond the maximal number that can be Poisson commuting, and hence the dimension of the leaves of the invariant foliation is less than n, we say the system is superintegrable. If there is a regular foliation with one-dimensional leaves (curves), this is called maximally superintegrable.

Read more about this topic:  Integrable System

Famous quotes containing the word systems:

    No civilization ... would ever have been possible without a framework of stability, to provide the wherein for the flux of change. Foremost among the stabilizing factors, more enduring than customs, manners and traditions, are the legal systems that regulate our life in the world and our daily affairs with each other.
    Hannah Arendt (1906–1975)