Integrable System - General Dynamical Systems

General Dynamical Systems

In the context of differentiable dynamical systems, the notion of integrability refers to the existence of invariant, regular foliations; i.e., ones whose leaves are embedded submanifolds of the smallest possible dimension that are invariant under the flow. There is thus a variable notion of the degree of integrability, depending on the dimension of the leaves of the invariant foliation. This concept has a refinement in the case of Hamiltonian systems, known as complete integrability in the sense of Liouville (see below), which is what is most frequently referred to in this context.

An extension of the notion of integrability is also applicable to discrete systems such as lattices. This definition can be adapted to describe evolution equations that either are systems of differential equations or finite difference equations.

The distinction between integrable and nonintegrable dynamical systems thus has the qualitative implication of regular motion vs. chaotic motion and hence is an intrinsic property, not just a matter of whether a system can be explicitly integrated in exact form.

Read more about this topic:  Integrable System

Famous quotes containing the words general and/or systems:

    The general interest of the masses might take the place of the insight of genius if it were allowed freedom of action.
    Denis Diderot (1713–1784)

    People stress the violence. That’s the smallest part of it. Football is brutal only from a distance. In the middle of it there’s a calm, a tranquility. The players accept pain. There’s a sense of order even at the end of a running play with bodies stewn everywhere. When the systems interlock, there’s a satisfaction to the game that can’t be duplicated. There’s a harmony.
    Don Delillo (b. 1926)