Example of A Non-integrable System
Not every Pfaffian system is completely integrable in the Frobenius sense. For example, consider the following one-form on R3 - (0,0,0)
If dθ were in the ideal generated by θ we would have, by the skewness of the wedge product
But a direct calculation gives
which is a nonzero multiple of the standard volume form on R3. Therefore, there are no two-dimensional leaves, and the system is not completely integrable.
On the other hand, the curve defined by
is easily verified to be a solution (i.e. an integral curve) for the above Pfaffian system for any nonzero constant c.
Read more about this topic: Integrability Conditions For Differential Systems
Famous quotes containing the word system:
“The pace of science forces the pace of technique. Theoretical physics forces atomic energy on us; the successful production of the fission bomb forces upon us the manufacture of the hydrogen bomb. We do not choose our problems, we do not choose our products; we are pushed, we are forcedby what? By a system which has no purpose and goal transcending it, and which makes man its appendix.”
—Erich Fromm (19001980)