Fixed Prime Divisors
Integer-valued polynomials may be used effectively to solve questions about fixed divisors of polynomials. For example, the polynomials P with integer coefficients that always take on even number values are just those such that P/2 is integer valued. Those in turn are the polynomials that may be expressed as a linear combination with even integer coefficients of the binomial coefficients.
In questions of prime number theory, such as Schinzel's hypothesis H and the Bateman–Horn conjecture, it is a matter of basic importance to understand the case when P has no fixed prime divisor (this has been called Bunyakovsky's property, for Viktor Bunyakovsky). By writing P in terms of the binomial coefficients, we see the highest fixed prime divisor is also the highest common factor of the coefficients in such a representation. So Bunyakovsky's property is equivalent to coprime coefficients.
As an example, the pair of polynomials n and n2 + 2 violates this condition at p = 3: for every n the product
- n(n2 + 2)
is divisible by 3. Consequently there cannot be infinitely many prime pairs n and n2 + 2. The divisibility is attributable to the alternate representation
- n(n + 1)(n − 1) + 3n.
Read more about this topic: Integer-valued Polynomial
Famous quotes containing the words fixed and/or prime:
“Our live experiences, fixed in aphorisms, stiffen into cold epigrams. Our hearts blood, as we write it, turns to mere dull ink.”
—F.H. (Francis Herbert)
“Ay, look: high heaven and earth ail from the prime foundation;
All thoughts to rive the heart are here, and all are vain:
Horror and scorn and hate and fear and indignation
Oh, why did I awake? When shall I sleep again?”
—A.E. (Alfred Edward)