Insect Winter Ecology - Freeze Avoidance

Freeze Avoidance

Lethal freezing occurs when insects are exposed to temperatures below the melting point (MP) of their body fluids; therefore, insects that do not migrate from regions with the onset of colder temperatures must devise strategies to either tolerate or avoid freezing of intracellular and extracellular body fluids. Surviving colder temperatures, in insects, generally falls under two categories: Freeze-tolerant insects can tolerate the formation of internal ice and freeze-avoidant insects avoid freezing by keeping the bodily fluids liquid. The general strategy adopted by insects also differs between the northern hemisphere and the southern hemisphere. In temperate regions of the northern hemisphere where cold temperatures are expected seasonally and are usually for long periods of time, the main strategy is freeze avoidance. In temperate regions of the southern hemisphere, where seasonal cold temperatures are not as extreme or long lasting, the main strategy is freeze tolerance. However, in the Arctic, where freezing occurs seasonally, and for extended periods (>9 months), freeze tolerance also predominates.

Freeze avoidance involves both physiological and biochemical mechanisms. One method of freeze avoidance is the selection of a dry hibernation site in which no ice nucleation from an external source can occur. Insects may also have a physical barrier such as a wax-coated cuticle that provides protection against external ice across the cuticle. The stage of development at which an insect over-winters varies across species, but can occur at any point of the life cycle (i.e., egg, pupa, larva, and adult).

Freeze-avoidant insects that cannot tolerate the formation of ice within their bodily fluids need to implement strategies to depress the temperature at which their bodily fluids will freeze. Supercooling is the process by which water cools below its freezing point without changing phase into a solid, due to the lack of a nucleation source. Water requires a particle such as dust in order to crystallize and if no source of nucleation is introduced, water can cool down to -42°C without freezing. In the initial phase of seasonal cold hardening, ice-nucleating agents (INAs) such as food particles, dust particles and bacteria, in the gut or intracellular compartments of freeze avoidant insects have to be removed or inactivated. Removal of ice-nucleating material from the gut can be achieved by cessation in feeding, clearing the gut and removing lipoprotein ice nucleators (LPINs) from the heamolymph and in some species, by the shedding of the mid-gut during moulting.

In addition to physical preparations for winter, many insects also alter their biochemistry and metabolism. For example, some insects synthesize cryoprotectants such as polyols and sugars, which reduce the lethal freezing temperature of the body. Although polyols such as sorbitol, mannitol, and ethylene glycol can also be found, glycerol is by far the most common cryoprotectant and can be equivalent to ~20% of the total body mass. Glycerol is distributed uniformly throughout the head, the thorax, and the abdomen of insects, and is in equal concentration in intracellular and extracellular compartments. The depressive effect of glycerol on the super cooling point (SCP) is thought to be due to the high viscosity of glycerol solutions at low temperatures. This would inhibit INA activity and SCPs would drop far below the environmental temperature. At colder temperatures (below 0 °C), glycogen production is inhibited, and the breakdown of glycogen into glycerol is enhanced, resulting in the glycerol levels in freeze avoidant insects reaching levels five times higher than those in freeze tolerant insects which do not need to cope with extended periods of cold temperatures.

Though not all freeze avoidant insects produce polyols, all hibernating insects produce thermal hysteresis factors (THFs). A seasonal photoperiodic timing mechanism is responsible for increasing the antifreeze protein levels with concentrations reaching their highest in the winter. In the pyrochroid beetle, ‘’Dendroides canadensis’’, a short photoperiod of 8 hours light and 16 hours of darkness, results in the highest levels of THFs, which corresponds with the shortening of daylight hours associated with winter. These antifreeze proteins are thought to stabilize SCPs by binding directly to the surface structures of the ice crystals themselves, diminishing crystal size and growth. Therefore, instead of acting to change the biochemistry of the bodily fluids as seen with cryoprotectants, THFs act directly with the ice crystals by adsorbing to the developing crystals to inhibit their growth and reduce the chance of lethal freezing occurring.

Read more about this topic:  Insect Winter Ecology

Famous quotes containing the words freeze and/or avoidance:

    So in your discussions of the nuclear freeze proposals, I urge you to beware the temptation of pride—the temptation blithely to declare yourselves above it all and label both sides equally at fault, to ignore the facts of history and the aggressive impulses of an evil empire, to simply call the arms race a giant misunderstanding and thereby remove yourself from the struggle between right and wrong, good and evil.
    Ronald Reagan (b. 1911)

    The American Dream, the idea of the happy ending, is an avoidance of responsibility and commitment.
    Jill Robinson (b. 1936)