Existence and Uniqueness of Solutions
For a large class of initial value problems, the existence and uniqueness of a solution can be illustrated through the use of a calculator.
The Picard–Lindelöf theorem guarantees a unique solution on some interval containing t0 if ƒ is continuous on a region containing t0 and y0 and satifies the Lipschitz condition on the variable y. The proof of this theorem proceeds by reformulating the problem as an equivalent integral equation. The integral can be considered an operator which maps one function into another, such that the solution is a fixed point of the operator. The Banach fixed point theorem is then invoked to show that there exists a unique fixed point, which is the solution of the initial value problem.
An older proof of the Picard–Lindelöf theorem constructs a sequence of functions which converge to the solution of the integral equation, and thus, the solution of the initial value problem. Such a construction is sometimes called "Picard's method" or "the method of successive approximations". This version is essentially a special case of the Banach fixed point theorem.
Hiroshi Okamura obtained a necessary and sufficient condition for the solution of an initial value problem to be unique. This condition has to do with the existence of a Lyapunov function for the system.
In some situations, the function ƒ is not of class C1, or even Lipschitz, so the usual result guaranteeing the local existence of a unique solution does not apply. The Peano existence theorem however proves that even for ƒ merely continuous, solutions are guaranteed to exist locally in time; the problem is that there is no guarantee of uniqueness. The result may be found in Coddington & Levinson (1955, Theorem 1.3) or Robinson (2001, Theorem 2.6). An even more general result is the Carathéodory existence theorem, which proves existence for some discontinuous functions ƒ.
Read more about this topic: Initial Value Problem
Famous quotes containing the words existence, uniqueness and/or solutions:
“...care and labor are as much correlated to human existence as shadow is to light ...”
—Harriet Beecher Stowe (18111896)
“Until now when we have started to talk about the uniqueness of America we have almost always ended by comparing ourselves to Europe. Toward her we have felt all the attraction and repulsions of Oedipus.”
—Daniel J. Boorstin (b. 1914)
“The anorexic prefigures this culture in rather a poetic fashion by trying to keep it at bay. He refuses lack. He says: I lack nothing, therefore I shall not eat. With the overweight person, it is the opposite: he refuses fullness, repletion. He says, I lack everything, so I will eat anything at all. The anorexic staves off lack by emptiness, the overweight person staves off fullness by excess. Both are homeopathic final solutions, solutions by extermination.”
—Jean Baudrillard (b. 1929)