Infinitesimal Strain Theory - Strain Tensor in Spherical Coordinates

Strain Tensor in Spherical Coordinates

In spherical coordinates, the displacement vector can be written as

 \mathbf{u} = u_r~\mathbf{e}_r + u_\theta~\mathbf{e}_\theta + u_\phi~\mathbf{e}_\phi

The components of the strain tensor in a spherical coordinate system are given by

 \begin{align} \varepsilon_{rr} & = \cfrac{\partial u_r}{\partial r} \\ \varepsilon_{\theta\theta} & = \cfrac{1}{r}\left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) \\ \varepsilon_{\phi\phi} & = \cfrac{1}{r\sin\theta}\left(\cfrac{\partial u_\phi}{\partial \phi} + u_r\sin\theta + u_\theta\cos\theta\right)\\ \varepsilon_{r\theta} & = \cfrac{1}{2}\left(\cfrac{1}{r}\cfrac{\partial u_r}{\partial \theta} + \cfrac{\partial u_\theta}{\partial r}- \cfrac{u_\theta}{r}\right) \\ \varepsilon_{\theta \phi} & = \cfrac{1}{2r}\left(\cfrac{1}{\sin\theta}\cfrac{\partial u_\theta}{\partial \phi} + \cfrac{\partial u_\phi}{\partial \theta} - u_\phi\cot\theta\right) \\ \varepsilon_{\phi r} & = \cfrac{1}{2}\left(\cfrac{1}{r\sin\theta}\cfrac{\partial u_r}{\partial \phi} + \cfrac{\partial u_\phi}{\partial r} - \cfrac{u_\phi}{r}\right) \end{align}

Read more about this topic:  Infinitesimal Strain Theory

Famous quotes containing the word strain:

    The Founding Fathers in their wisdom decided that children were an unnatural strain on parents. So they provided jails called schools, equipped with tortures called an education. School is where you go between when your parents can’t take you and industry can’t take you.
    John Updike (b. 1932)