Infinite Conjugacy Class Property

In mathematics, a group is said to have the infinite conjugacy class property, or to be an icc group, if the conjugacy class of every group element but the identity is infinite. In abelian groups, every conjugacy class consists of only one element, so icc groups are, in a way, as far from being abelian as possible.

The von Neumann group algebra of a group is a factor if and only if the group has the infinite conjugacy class property. It will then be, provided the group is nontrivial, of type II1, i.e. it will possess a unique, faithful, tracial state.

Examples for icc groups are free groups on at least two generators, or, more generally, nontrivial free products.

Famous quotes containing the words infinite, class and/or property:

    For granting we have sinned, and that the offence
    Of man is made against Omnipotence,
    Some price that bears proportion must be paid,
    And infinite with infinite be weighed.
    John Dryden (1631–1700)

    Ours is the old, old story of every uprising race or class or order. The work of elevation must be wrought by ourselves or not at all.
    Frances Power Cobbe (1822–1904)

    You and I ... are convinced of the fact that if our Government in Washington and in a majority of the States should revert to the control of those who frankly put property ahead of human beings instead of working for human beings under a system of government which recognizes property, the nation as a whole would again be in a bad situation.
    Franklin D. Roosevelt (1882–1945)