Infinitary Combinatorics - Ramsey Theory For Infinite Sets

Ramsey Theory For Infinite Sets

Write κ, λ for ordinals, m for a cardinal number and n for a natural number. Erdős & Rado (1956) introduced the notation

as a shorthand way of saying that every partition of the set n of n-element subsets of into m pieces has a homogeneous set of order type λ. A homogeneous set is in this case a subset of κ such that every n-element subset is in the same element of the partition. When m is 2 it is often omitted.

Assuming the Axiom of Choice, there are no ordinals κ with κ→(ω)ω, so n is usually taken to be finite. An extension where n is almost allowed to be infinite is the notation

which is a shorthand way of saying that every partition of the set of finite subsets of κ into m pieces has a subset of order type λ such that for any finite n, all subsets of size n are in the same element of the partition. When m is 2 it is often omitted.

Another variation is the notation

which is a shorthand way of saying that every coloring of the set n of n-element subsets of κ with 2 colors has a subset of order type λ such that all elements of n have the first color, or a subset of order type μ such that all elements of n have the second color.

Some properties of this include: (in what follows is a cardinal)

for all finite n and k (Ramsey's theorem).
(Erdős–Rado theorem.)
(Sierpiński theorem)
(Erdős–Dushnik–Miller theorem).

In choiceless universes, partition properties with infinite exponents may hold, and some of them are obtained as consequences of the Axiom of determinacy (AD). For example, Donald A. Martin proved that AD implies

Read more about this topic:  Infinitary Combinatorics

Famous quotes containing the words theory, infinite and/or sets:

    The theory of truth is a series of truisms.
    —J.L. (John Langshaw)

    ...if you are to gain any great amount of good from the world, you must attain a passive condition of mind. ...it is never to be forgotten that it is the rest of the world and not you that holds the great share of the world’s wealth, and that you must allow yourself to be acted upon by the world, if you would become a sharer in the gain of all the ages to your own infinite advantage.
    Anna C. Brackett (1836–1911)

    bars of that strange speech
    In which each sound sets out to seek each other,
    Murders its own father, marries its own mother,
    And ends as one grand transcendental vowel.
    Randall Jarrell (1914–1965)