Indicator Function - Characteristic Function in Fuzzy Set Theory

Characteristic Function in Fuzzy Set Theory

In classical mathematics, characteristic functions of sets only take values 1 (members) or 0 (non-members). In fuzzy set theory, characteristic functions are generalized to take value in the real unit interval, or more generally, in some algebra or structure (usually required to be at least a poset or lattice). Such generalized characteristic functions are more usually called membership functions, and the corresponding "sets" are called fuzzy sets. Fuzzy sets model the gradual change in the membership degree seen in many real-world predicates like "tall", "warm", etc.

Read more about this topic:  Indicator Function

Famous quotes containing the words function, fuzzy, set and/or theory:

    To look backward for a while is to refresh the eye, to restore it, and to render it the more fit for its prime function of looking forward.
    Margaret Fairless Barber (1869–1901)

    Even their song is not a sure thing.
    It is not a language;
    it is a kind of breathing.
    They are two asthmatics
    whose breath sobs in and out
    through a small fuzzy pipe.
    Anne Sexton (1928–1974)

    When desire, having rejected reason and overpowered judgment which leads to right, is set in the direction of the pleasure which beauty can inspire, and when again under the influence of its kindred desires it is moved with violent motion towards the beauty of corporeal forms, it acquires a surname from this very violent motion, and is called love.
    Socrates (469–399 B.C.)

    Thus the theory of description matters most.
    It is the theory of the word for those
    For whom the word is the making of the world,
    The buzzing world and lisping firmament.
    Wallace Stevens (1879–1955)