Relation To Solenoidal Field
An incompressible flow is described by a velocity field which is solenoidal. But a solenoidal field, besides having a zero divergence, also has the additional connotation of having non-zero curl (i.e., rotational component).
Otherwise, if an incompressible flow also has a curl of zero, so that it is also irrotational, then the velocity field is actually Laplacian.
Read more about this topic: Incompressible Flow
Famous quotes containing the words relation to, relation and/or field:
“Only in a house where one has learnt to be lonely does one have this solicitude for things. Ones relation to them, the daily seeing or touching, begins to become love, and to lay one open to pain.”
—Elizabeth Bowen (18991973)
“Only in a house where one has learnt to be lonely does one have this solicitude for things. Ones relation to them, the daily seeing or touching, begins to become love, and to lay one open to pain.”
—Elizabeth Bowen (18991973)
“My business is stanching blood and feeding fainting men; my post the open field between the bullet and the hospital. I sometimes discuss the application of a compress or a wisp of hay under a broken limb, but not the bearing and merits of a political movement. I make gruelnot speeches; I write letters home for wounded soldiers, not political addresses.”
—Clara Barton (18211912)