Relation To Area of The Triangle
The radii of the in- and excircles are closely related to the area of the triangle. Let K be the triangle's area and let a, b and c, be the lengths of its sides. By Heron's formula, the area of the triangle is
where is the semiperimeter and P = 2s is the perimeter.
The radius of the incircle (also known as the inradius, r ) is
Thus, the area K of a triangle may be found by multiplying the inradius by the semiperimeter:
The radii in the excircles are called the exradii. The excircle at side a has radius
Similarly the radii of the excircles at sides b and c are respectively
and
From these formulas one can see that the excircles are always larger than the incircle and that the largest excircle is the one tangent to the longest side and the smallest excircle is tangent to the shortest side. Further, combining these formulas with Heron's area formula yields the result that
The ratio of the area of the incircle to the area of the triangle is less than or equal to, with equality holding only for equilateral triangles.
Read more about this topic: Incircle And Excircles Of A Triangle
Famous quotes containing the words relation to, relation and/or area:
“Concord is just as idiotic as ever in relation to the spirits and their knockings. Most people here believe in a spiritual world ... in spirits which the very bullfrogs in our meadows would blackball. Their evil genius is seeing how low it can degrade them. The hooting of owls, the croaking of frogs, is celestial wisdom in comparison.”
—Henry David Thoreau (18171862)
“We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.”
—Jean Baudrillard (b. 1929)
“The area [of toilet training] is one where a child really does possess the power to defy. Strong pressure leads to a powerful struggle. The issue then is not toilet training but who holds the reinsmother or child? And the child has most of the ammunition!”
—Dorothy Corkville Briggs (20th century)