Impact Wrench - Hammer Mechanisms

Hammer Mechanisms

The hammer mechanism in an impact wrench needs to allow the hammer to spin freely, impact the anvil, then release and spin freely again. Many designs are used to accomplish this task, all with some drawbacks. Depending on the design, the hammer may drive the anvil either once or twice per revolution (where a revolution is the difference between the hammer and the anvil), with some designs delivering faster, weaker blows twice per revolution, or slower, more powerful ones only once per revolution.

A common hammer design has the hammer able to slide and rotate on a shaft, with a spring holding it in the downwards position. Between the hammer and the driving shaft is a steel ball on a ramp, such that if the input shaft rotates ahead of the hammer with enough torque, the spring is compressed and the hammer is slid backwards. On the bottom of the hammer, and the top of the anvil, are dog teeth, designed for high impacts. When the tool is used, the hammer rotates until its dog teeth contact the teeth on the anvil, stopping the hammer from rotating. The input shaft continues to turn, causing the ramp to lift the steel ball, lifting the hammer assembly until the dog teeth no longer engage the anvil, and the hammer is free to spin again. The hammer then springs forward to the bottom of the ball ramp, and is accelerated by the input shaft, until the dog teeth contact the anvil again, delivering the impact. The process then repeats, delivering blows every time the teeth meet, almost always twice per revolution. If the output has little load on it, such as when spinning a loose nut on a bolt, the torque will never be high enough to cause the ball to compress the spring, and the input will smoothly drive the output. This design has the advantage of small size and simplicity, but energy is wasted moving the entire hammer back and forth, and delivering multiple blows per revolution gives less time for the hammer to accelerate. This design is often seen after a gear reduction, compensating for the lack of acceleration time by delivering more torque at a lower speed.

Another common design uses a hammer fixed directly onto the input shaft, with a pair of pins acting as clutches. When the hammer rotates past the anvil, a ball ramp pushes the pins outwards against a spring, extending them to where they will hit the anvil and deliver the impact, then release and spring back into the hammer, usually by having the balls "fall off" the other side of the ramp at the instant the hammer hits. Since the ramp need only have one peak around the shaft, and the engagement of the hammer with the anvil is not based on a number of teeth between them, this design allows the hammer to accelerate for a full revolution before contacting the anvil, giving it more time to accelerate and delivering a stronger impact. The disadvantages are that the sliding pins must handle very high impacts, and often cause the early failure of tool.

Yet another design uses a rocking weight inside the hammer, and a single, long protrusion on the side of the anvil's shaft. When the hammer spins, the rocking weight first contacts the anvil on the opposite side than used to drive the anvil, nudging the weight into position for the impact. As the hammer spins further, the weight hits the side of the anvil, transferring the hammer's and its own energy to the output, then rocks back to the other side. This design also has the advantage of hammering only once per revolution, as well as its simplicity, but has the disadvantage of making the tool vibrate as the rocking weight acts as an eccentric, and can be less tolerant of running the tool with low input power. To help combat the vibration and uneven drive, sometimes two of these hammers are placed in line with each other, at 180 degree offsets, both striking at the same time.

Many other designs are used, but all of them accomplish the same goal of allowing the hammer to spin freely of the anvil, allowing it to be accelerated and store energy, then delivering that energy suddenly to the anvil, before allowing the process to repeat.

Read more about this topic:  Impact Wrench

Famous quotes containing the word hammer:

    This Administration has declared unconditional war on poverty and I have come here this morning to ask all of you to enlist as volunteers. Members of all parties are welcome to our tent. Members of all races ought to be there. Members of all religions should come and help us now to strike the hammer of truth against the anvil of public opinion again and again until the ears of this Nation are open, until the hearts of this Nation are touched, and until the conscience of America is awakened.
    Lyndon Baines Johnson (1908–1973)