Definition
Formally, if M is a set, the identity function f on M is defined to be that function with domain and codomain M which satisfies
- f(x) = x for all elements x in M.
In other words, the function assigns to each element x of M the element x of M.
The identity function f on M is often denoted by idM.
In terms of set theory, where a function is defined as a particular kind of binary relation, the identity function is given by the identity relation, or diagonal of M.
Read more about this topic: Identity Function
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)