In mathematics, ideal theory is the theory of ideals in commutative rings; and is the precursor name for the contemporary subject of commutative algebra. The name grew out of the central considerations, such as the Lasker–Noether theorem in algebraic geometry, and the ideal class group in algebraic number theory, of the commutative algebra of the first quarter of the twentieth century. It was used in the influential van der Waerden text on abstract algebra from around 1930.
The ideal theory in question had been based on elimination theory, but in line with David Hilbert's taste moved away from algorithmic methods. Gröbner basis theory has now reversed the trend, for computer algebra.
The importance of the ideal in general of a module, more general than an ideal, probably led to the perception that ideal theory was too narrow a description. Valuation theory, too, was an important technical extension, and was used by Helmut Hasse and Oscar Zariski. Bourbaki used commutative algebra; sometimes local algebra is applied to the theory of local rings. D. G. Northcott's 1953 Cambridge Tract Ideal Theory (reissued 2004 under the same title) was one of the final appearances of the name.
Read more about Ideal Theory: In Political Philosophy
Famous quotes containing the words ideal and/or theory:
“The ideal of the self-sufficient American family is a myth, dangerous because most families, especially affluent families, do in fact make use of a range of services to survive. Families needing one or another kind of help are not morally deficient; most families do need assistance at one time or another.”
—Joseph Featherstone (20th century)
“... the first reason for psychologys failure to understand what people are and how they act, is that clinicians and psychiatrists, who are generally the theoreticians on these matters, have essentially made up myths without any evidence to support them; the second reason for psychologys failure is that personality theory has looked for inner traits when it should have been looking for social context.”
—Naomi Weisstein (b. 1939)