General Properties
- If f: A → B is a homomorphism between two sheaves of rings on the same space X, the kernel of f is an ideal sheaf in A.
- Conversely, for any ideal sheaf J in a sheaf of rings A, there is a natural structure of a sheaf of rings on the quotient sheaf A/J. Note that the canonical map
-
- Γ(U, A)/Γ(U, J) → Γ(U, A/J)
- for open subsets U is injective, but not surjective in general. (See sheaf cohomology.)
Read more about this topic: Ideal Sheaf
Famous quotes containing the words general and/or properties:
“Could anything be more indicative of a slight but general insanity than the aspect of the crowd on the streets of Chicago?”
—Charles Horton Cooley (18641929)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)