Ideal Number

In number theory an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the ring of integers of an algebraic number field is principal if it consists of multiples of a single element of the ring, and nonprincipal otherwise. By the principal ideal theorem any nonprincipal ideal becomes principal when extended to an ideal of the Hilbert class field. This means that there is an element of the ring of integers of the Hilbert class field, which is an ideal number, such that the original nonprincipal ideal is equal to the collection of all multiples of this ideal number by elements of this ring of integers that lie in the original field's ring of integers.

Read more about Ideal Number:  Example, History

Famous quotes containing the words ideal and/or number:

    In one sense it is evident that the art of kingship does include the art of lawmaking. But the political ideal is not full authority for laws but rather full authority for a man who understands the art of kingship and has kingly ability.
    Plato (428–348 B.C.)

    A great number of the disappointments and mishaps of the troubled world are the direct result of literature and the allied arts. It is our belief that no human being who devotes his life and energy to the manufacture of fantasies can be anything but fundamentally inadequate
    Christopher Hampton (b. 1946)