See Also
- Appell series, a 2-variable generalization of hypergeometric series
- Basic hypergeometric series where the ratio of terms is a periodic function of the index
- Bilateral hypergeometric series pHp are similar to generalized hypergeometric series, but summed over all integers
- Binomial series 1F0
- Confluent hypergeometric series 1F1(a;c;z)
- Elliptic hypergeometric series where the ratio of terms is an elliptic function of the index
- Euler hypergeometric integral, an integral representation of 2F1
- Fox H-function, an extension of the Meijer G-function
- Fox–Wright function, a generalization of the generalized hypergeometric function
- Frobenius solution to the hypergeometric equation
- General hypergeometric function introduced by Gelfand.
- Generalized hypergeometric series pFq where the ratio of terms is a rational function of the index
- Geometric series, where the ratio of terms is a constant
- Heun function, solutions of second order ODE's with four regular singular points
- Horn function, 34 distinct convergent hypergeometric series in two variables
- Humbert series 7 hypergeometric functions of 2 variables
- Hypergeometric differential equation, a second-order linear ordinary differential equation
- Hypergeometric distribution, a discrete probability distribution
- Hypergeometric function of a matrix argument, the multivariate generalization of the hypergeometric series
- Kampé de Fériet function, hypergeometric series of two variables
- Lauricella hypergeometric series, hypergeometric series of three variables
- MacRobert E-function, an extension of the generalized hypergeometric series pFq to the case p>q+1.
- Meijer G-function, an extension of the generalized hypergeometric series pFq to the case p>q+1.
- Modular hypergeometric series, a terminating form of the elliptic hypergeometric series
- Theta hypergeometric series A special sort of elliptic hypergeometric series
Read more about this topic: Hypergeometric Differential Equation
Famous quotes containing the word see:
“To see ourselves as others see us can be eye-opening. To see others as sharing a nature with ourselves is the merest decency. But it is from the far more difficult achievement of seeing ourselves amongst others, as a local example of the forms human life has locally taken, a case among cases, a world among worlds, that the largeness of mind, without which objectivity is self- congratulation and tolerance a sham, comes.”
—Clifford Geertz (b. 1926)