In geometry, the hyperboloid model, also known as the Minkowski model or the Lorentz model (after Hermann Minkowski and Hendrik Lorentz), is a model of n-dimensional hyperbolic geometry in which points are represented by the points on the forward sheet S+ of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space and m-planes are represented by the intersections of the (m+1)-planes in Minkowski space with S+. The hyperbolic distance function admits a simple expression in this model. The hyperboloid model of the n-dimensional hyperbolic space is closely related to the Beltrami–Klein model and to the Poincaré disk model as they are projective models in the sense that the isometry group is a subgroup of the projective group.
Read more about Hyperboloid Model: Minkowski Quadratic Form, Isometries, History
Famous quotes containing the word model:
“There are very many characteristics which go into making a model civil servant. Prominent among them are probity, industry, good sense, good habits, good temper, patience, order, courtesy, tact, self-reliance, many deference to superior officers, and many consideration for inferiors.”
—Chester A. Arthur (18291886)