Hyperbolic Partial Differential Equation - Definition

Definition

A partial differential equation is hyperbolic at a point P provided that the Cauchy problem is uniquely solvable in a neighborhood of P for any initial data given on a non-characteristic hypersurface passing through P. Here the prescribed initial data consists of all (transverse) derivatives of the function on the surface up to one less than the order of the differential equation.

Read more about this topic:  Hyperbolic Partial Differential Equation

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)