Hyperbolic Function - Taylor Series Expressions

Taylor Series Expressions

It is possible to express the above functions as Taylor series:

The function sinh x has a Taylor series expression with only odd exponents for x. Thus it is an odd function, that is, −sinh x = sinh(−x), and sinh 0 = 0.

The function cosh x has a Taylor series expression with only even exponents for x. Thus it is an even function, that is, symmetric with respect to the y-axis. The sum of the sinh and cosh series is the infinite series expression of the exponential function.

\begin{align} \tanh x &= x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!}, \left |x \right | < \frac {\pi} {2} \\ \coth x &= x^{-1} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots = x^{-1} + \sum_{n=1}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!}, 0 < \left |x \right | < \pi \\ \operatorname {sech}\, x &= 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!}, \left |x \right | < \frac {\pi} {2} \\ \operatorname {csch}\, x &= x^{-1} - \frac {x} {6} +\frac {7x^3} {360} -\frac {31x^5} {15120} + \cdots = x^{-1} + \sum_{n=1}^\infty \frac{ 2 (1-2^{2n-1}) B_{2n} x^{2n-1}}{(2n)!}, 0 < \left |x \right | < \pi
\end{align}

where

is the nth Bernoulli number
is the nth Euler number

Read more about this topic:  Hyperbolic Function

Famous quotes containing the words taylor, series and/or expressions:

    So, while their bodies moulder here
    Their souls with God himself shall dwell,—
    But always recollect, my dear,
    That wicked people go to hell.
    —Ann Taylor (1782–1866)

    The woman’s world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.
    Jeanine Basinger (b. 1936)

    Preschoolers think and talk in concrete, literal terms. When they hear a phrase such as “losing your temper,” they may wonder where the lost temper can be found. Other expressions they may hear in times of crisis—raising your voice, crying your eyes out, going to pieces, falling apart, picking on each other, you follow in your father’s footsteps—may be perplexing.
    Ruth Formanek (20th century)