Homotopy Groups of Spheres - Table of Stable Homotopy Groups

Table of Stable Homotopy Groups

The stable homotopy groups πk are the product of cyclic groups of the infinite or prime power orders shown in the table. (For largely historical reasons, stable homotopy groups are usually given as products of cyclic groups of prime power order, while tables of unstable homotopy groups often give them as products of the smallest number of cyclic groups.) The main complexity is in the 2-, 3-, and 5-components: for p > 5, the p-components in the range of the table are accounted for by the J-homomorphism and are cyclic of order p if 2(p−1) divides k+1 and 0 otherwise (Fuks 2001). (The 2-components can be found in Kochman (1990), though there were some errors for k≥54 that were corrected by Kochman & Mahowald (1995), and the 3- and 5-components in Ravenel (2003).) The mod 8 behavior of the table comes from Bott periodicity via the J-homomorphism, whose image is underlined.

n 0 1 2 3 4 5 6 7
π0+nS 2 2 8⋅3 2 16⋅3⋅5
π8+nS 2⋅2 2⋅22 2⋅3 8⋅9⋅7 3 22 32⋅2⋅3⋅5
π16+nS 2⋅2 2⋅23 8⋅2 8⋅2⋅3⋅11 8⋅3 22 2⋅2 16⋅8⋅2⋅9⋅3⋅5⋅7⋅13
π24+nS 2⋅2 2⋅2 22⋅3 8⋅3 2 3 2⋅3 64⋅22⋅3⋅5⋅17
π32+nS 2⋅23 2⋅24 4⋅23 8⋅22⋅27⋅7⋅19 2⋅3 22⋅3 4⋅2⋅3⋅5 16⋅25⋅3⋅3⋅25⋅11
π40+nS 2⋅4⋅24⋅3 2⋅24 8⋅22⋅3 8⋅3⋅23 8 16⋅23⋅9⋅5 24⋅3 32⋅4⋅23⋅9⋅3⋅5⋅7⋅13
π48+nS 2⋅4⋅23 2⋅2⋅3 23⋅3 8⋅4⋅22⋅3 23⋅3 24 4⋅2 16⋅3⋅3⋅5⋅29
π56+nS 2⋅2 2⋅23 22 8⋅22⋅9⋅7⋅11⋅31 4 4⋅22⋅3 128⋅23⋅3⋅5⋅17

Read more about this topic:  Homotopy Groups Of Spheres

Famous quotes containing the words table, stable and/or groups:

    How to attain sufficient clarity of thought to meet the terrifying issues now facing us, before it is too late, is ... important. Of one thing I feel reasonably sure: we can’t stop to discuss whether the table has or hasn’t legs when the house is burning down over our heads. Nor do the classics per se seem to furnish the kind of education which fits people to cope with a fast-changing civilization.
    Mary Barnett Gilson (1877–?)

    This stable is a Prince’s court.
    This crib His chair of state;
    The beasts are parcel of His pomp,
    The wooden dish His plate.
    Robert Southwell (1561?–1595)

    If we can learn ... to look at the ways in which various groups appropriate and use the mass-produced art of our culture ... we may well begin to understand that although the ideological power of contemporary cultural forms is enormous, indeed sometimes even frightening, that power is not yet all-pervasive, totally vigilant, or complete.
    Janice A. Radway (b. 1949)