Homotopy Groups of Spheres - General Theory

General Theory

As noted already, when i is less than n, πi(Sn) = 0, the trivial group (Hatcher 2002). The reason is that a continuous mapping from an i-sphere to an n-sphere with i < n can always be deformed so that it is not surjective. Consequently, its image is contained in Sn with a point removed; this is a contractible space, and any mapping to such a space can be deformed into a one-point mapping.

The case i = n has also been noted already, and is an easy consequence of the Hurewicz theorem: this theorem links homotopy groups with homology groups, which are generally easier to calculate; in particular, it shows that for a simply-connected space X, the first nonzero homotopy group πk(X), with k > 0, is isomorphic to the first nonzero homology group Hk(X). For the n-sphere, this immediately implies that for n > 0, πn(Sn) = Hn(Sn) = Z.

The homology groups Hi(Sn), with i > n, are all trivial. It therefore came as a great surprise historically that the corresponding homotopy groups are not trivial in general. This is the case that is of real importance: the higher homotopy groups πi(Sn), for i > n, are surprisingly complex and difficult to compute, and the effort to compute them has generated a significant amount of new mathematics.

Read more about this topic:  Homotopy Groups Of Spheres

Famous quotes containing the words general and/or theory:

    Never alone
    Did the King sigh, but with a general groan.
    William Shakespeare (1564–1616)

    Won’t this whole instinct matter bear revision?
    Won’t almost any theory bear revision?
    To err is human, not to, animal.
    Robert Frost (1874–1963)