General Theory
As noted already, when i is less than n, πi(Sn) = 0, the trivial group (Hatcher 2002). The reason is that a continuous mapping from an i-sphere to an n-sphere with i < n can always be deformed so that it is not surjective. Consequently, its image is contained in Sn with a point removed; this is a contractible space, and any mapping to such a space can be deformed into a one-point mapping.
The case i = n has also been noted already, and is an easy consequence of the Hurewicz theorem: this theorem links homotopy groups with homology groups, which are generally easier to calculate; in particular, it shows that for a simply-connected space X, the first nonzero homotopy group πk(X), with k > 0, is isomorphic to the first nonzero homology group Hk(X). For the n-sphere, this immediately implies that for n > 0, πn(Sn) = Hn(Sn) = Z.
The homology groups Hi(Sn), with i > n, are all trivial. It therefore came as a great surprise historically that the corresponding homotopy groups are not trivial in general. This is the case that is of real importance: the higher homotopy groups πi(Sn), for i > n, are surprisingly complex and difficult to compute, and the effort to compute them has generated a significant amount of new mathematics.
Read more about this topic: Homotopy Groups Of Spheres
Famous quotes containing the words general and/or theory:
“Women born at the turn of the century have been conditioned not to speak openly of their wedding nights. Of other nights in bed with other men they speak not at all. Today a woman having bedded with a great general feels free to tell us that in bed the general could not present arms. Women of my generation would have spared the great general the revelation of this failure.”
—Jessamyn West (19071984)
“Lucretius
Sings his great theory of natural origins and of wise conduct; Plato
smiling carves dreams, bright cells
Of incorruptible wax to hive the Greek honey.”
—Robinson Jeffers (18871962)