Homotopy Group - Relative Homotopy Groups

Relative Homotopy Groups

There are also relative homotopy groups πn(X,A) for a pair (X,A), where A is a subspace of X. The elements of such a group are homotopy classes of based maps Dn → X which carry the boundary Sn−1 into A. Two maps f, g are called homotopic relative to A if they are homotopic by a basepoint-preserving homotopy F : Dn × → X such that, for each p in Sn−1 and t in, the element F(p,t) is in A. The ordinary homotopy groups are the special case in which A is the base point.

These groups are abelian for but for form the top group of a crossed module with bottom group π1(A).

There is a long exact sequence of relative homotopy groups.

Read more about this topic:  Homotopy Group

Famous quotes containing the words relative and/or groups:

    Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.
    Charles Sanders Peirce (1839–1914)

    And seniors grow tomorrow
    From the juniors today,
    And even swimming groups can fade,
    Games mistresses turn grey.
    Philip Larkin (1922–1986)