Homotopy Group - Long Exact Sequence of A Fibration

Long Exact Sequence of A Fibration

Let p: EB be a basepoint-preserving Serre fibration with fiber F, that is, a map possessing the homotopy lifting property with respect to CW complexes. Suppose that B is path-connected. Then there is a long exact sequence of homotopy groups

... → πn(F) → πn(E) → πn(B) → πn−1(F) →... → π0(E) → 0.

Here the maps involving π0 are not group homomorphisms because the π0 are not groups, but they are exact in the sense that the image equals the kernel.

Example: the Hopf fibration. Let B equal S2 and E equal S3. Let p be the Hopf fibration, which has fiber S1. From the long exact sequence

⋯ → πn(S1) → πn(S3) → πn(S2) → πn−1(S1) → ⋯

and the fact that πn(S1) = 0 for n ≥ 2, we find that πn(S3) = πn(S2) for n ≥ 3. In particular, π3(S2) = π3(S3) = Z.

In the case of a cover space, when the fiber is discrete, we have that πn(E) is isomorphic to πn(B) for all n greater than 1, that πn(E) embeds injectively into πn(B) for all positive n, and that the subgroup of π1(B) that corresponds to the embedding of π1(E) has cosets in bijection with the elements of the fiber.

Read more about this topic:  Homotopy Group

Famous quotes containing the words long, exact and/or sequence:

    Lord, how long?
    Bible: Hebrew Isaiah, 6:11.

    Asking how long will the chastisement of the people last. God replies, “Until the cities be wasted without inhabitant, and the houses without man, and the land be utterly desolate, and the Lord have removed man far away, and there be a great forsaking in the midst of the land.”

    Hunger makes you restless. You dream about food—not just any food, but perfect food, the best food, magical meals, famous and awe-inspiring, the one piece of meat, the exact taste of buttery corn, tomatoes so ripe they split and sweeten the air, beans so crisp they snap between the teeth, gravy like mother’s milk singing to your bloodstream.
    Dorothy Allison (b. 1953)

    Reminiscences, even extensive ones, do not always amount to an autobiography.... For autobiography has to do with time, with sequence and what makes up the continuous flow of life. Here, I am talking of a space, of moments and discontinuities. For even if months and years appear here, it is in the form they have in the moment of recollection. This strange form—it may be called fleeting or eternal—is in neither case the stuff that life is made of.
    Walter Benjamin (1892–1940)