The homotopy category of chain complexes K(A) is then defined as follows: its objects are the same as the objects of Kom(A), namely chain complexes. Its morphisms are "maps of complexes modulo homotopy": that is, we define an equivalence relation
- if f is homotopic to g
and define
to be the quotient by this relation. It is clearer that this results in an additive category if one notes that this is the same as taking the quotient by the subgroup of null-homotopic maps.
The following variants of the definition are also widely used: if one takes only bounded-below (An=0 for n<<0), bounded-above (An=0 for n>>0), or bounded (An=0 for |n|>>0) complexes instead of unbounded ones, one speaks of the bounded-below homotopy category etc. They are denoted by K+(A), K-(A) and Kb(A), respectively.
A morphism which is an isomorphism in K(A) is called a homotopy equivalence. In detail, this means there is another map, such that the two compositions are homotopic to the identities: and .
The name "homotopy" comes from the fact that homotopic maps of topological spaces induce homotopic (in the above sense) maps of singular chains.
Read more about Homotopy Category Of Chain Complexes: Remarks, The Triangulated Structure, Generalization
Famous quotes containing the words category and/or chain:
“Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.”
—Vladimir Ilyich Lenin (18701924)
“How have I been able to live so long outside Nature without identifying myself with it? Everything lives, moves, everything corresponds; the magnetic rays, emanating either from myself or from others, cross the limitless chain of created things unimpeded; it is a transparent network that covers the world, and its slender threads communicate themselves by degrees to the planets and stars. Captive now upon earth, I commune with the chorus of the stars who share in my joys and sorrows.”
—Gérard De Nerval (18081855)