Definition and Examples
The homotopy category hTop of topological spaces is the category whose objects are topological spaces. Instead of taking continuous functions as morphisms between two such spaces, the morphisms in hTop between two spaces X and Y are given by the equivalence classes of all continuous functions X → Y with respect to the relation of homotopy. That is to say, two continuous functions are considered the same morphism in hTop if they can be deformed into one another via a (continuous) homotopy. The set of morphisms between spaces X and Y in a homotopy category is commonly denoted rather than Hom(X,Y).
The composition
- × →
is defined by
- o = .
This is well-defined since the homotopy relation is compatible with function composition. That is, if f1, g1 : X → Y are homotopic and f2, g2 : Y → Z are homotopic then their compositions f2 o f1, g2 o g1 X → Z are homotopic as well.
While the objects of a homotopy category are sets (with additional structure), the morphisms are not actual functions between them, but rather classes of functions. Indeed, hTop is an example of a category that is not concretizable, meaning there does not exist a faithful forgetful functor
- U : hTop → Set
to the category of sets. Homotopy categories are examples of quotient categories. The category hTop is a quotient of Top, the ordinary category of topological spaces.
Read more about this topic: Homotopy Category
Famous quotes containing the words definition and/or examples:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)