Hodge Dual - Inner Product of k-vectors

Inner Product of k-vectors

The Hodge dual induces an inner product on the space of k-vectors, that is, on the exterior algebra of V. Given two k-vectors and, one has

where ω is the normalised n-form (i.e. ω ∧ ∗ω = ω). In the calculus of exterior differential forms on a pseudo-Riemannian manifold of dimension n, the normalised n-form is called the volume form and can be written as

where is the matrix of components of the metric tensor on the manifold in the coordinate basis.

If an inner product is given on, then this equation can be regarded as an alternative definition of the Hodge dual. The wedge products of elements of an orthonormal basis in V form an orthonormal basis of the exterior algebra of V.

Read more about this topic:  Hodge Dual

Famous quotes containing the word product:

    In fast-moving, progress-conscious America, the consumer expects to be dizzied by progress. If he could completely understand advertising jargon he would be badly disappointed. The half-intelligibility which we expect, or even hope, to find in the latest product language personally reassures each of us that progress is being made: that the pace exceeds our ability to follow.
    Daniel J. Boorstin (b. 1914)