Hodge Dual - Index Notation For The Star Operator

Index Notation For The Star Operator

Using index notation, the Hodge dual is obtained by contracting the indices of a k-form with the n-dimensional completely antisymmetric Levi-Civita tensor. This differs from the Levi-Civita symbol by a factor of |det g|½, where g is an inner product (the metric tensor). The absolute value of the determinant is necessary if g is not positive-definite, e.g. for tangent spaces to Lorentzian manifolds.

Thus one writes

where η is an arbitrary antisymmetric tensor in k indices. It is understood that indices are raised and lowered using the same inner product g as in the definition of the Levi-Civita tensor. Although one can take the star of any tensor, the result is antisymmetric, since the symmetric components of the tensor completely cancel out when contracted with the completely anti-symmetric Levi-Civita symbol.

Read more about this topic:  Hodge Dual

Famous quotes containing the words index and/or star:

    Exile as a mode of genius no longer exists; in place of Joyce we have the fragments of work appearing in Index on Censorship.
    Nadine Gordimer (b. 1923)

    What is this flesh I purchased with my pains,
    This fallen star my milk sustains,
    This love that makes my heart’s blood stop
    Or strikes a sudden chill into my bones
    And bids my hair stand up?
    William Butler Yeats (1865–1939)